International Journal of Transformations in Business Management

(By Aryavart International University, India)

International Peer Reviewed (Refereed), Open Access Research Journal

E-ISSN : 2231-6868 | P-ISSN : 2454-468X

SJIF 2020: 6.336 |SJIF 2021 : 6.109 | ICV 2020=66.47

+91 9555269393   info@ijtbm.com


Abstract

Vol: 15, Issue: 3 2025

Page: 151-171

The Role of Big Data Analytics Capabilities in Enhancing Strategic Ambidexterity: An Analytical Study of the Opinions of a Sample of Employees in a Number of Travel Companies in Duhok City

Mohammed Abdulqader Mohammed, Rabee Ali Zaker

Received Date: 2025-06-29

Accepted Date: 2025-09-04

Published Date: 2025-09-10

http://doi.org/10.37648/ijtbm.v15i03.011

This paper will attempt to outline the contribution made by the capabilities of the big data analytics, in terms of its component dimensions of technological, human and organizational requirements, to strategic agility. The latter is also operationalized through its two aspects: exploratory agility as well as the exploitative agility. The key research question that underlines the investigation is the following: do the capabilities of big data analytics contribute in a significant way to the strategic agility in the investigated organization?

Back Download PDF

References

  • Addo-Tenkorang, R., & Helo, P. T. (2016). Big data applications in operations/supply-chain management: A literature review. Computers & Industrial Engineering, 101, 528–543. https://doi.org/10.1016/j.cie.2016.09.023
  • Agarwal, R., & Dhar, V. (2014). Big data, data science, and analytics: The opportunity and challenge for IS research. Information Systems Research, 25(3), 443–448. https://doi.org/10.1287/isre.2014.0546
  • Ahmadi, M., Osman, M. H. M., & Aghdam, M. M. (2020). Integrated exploratory factor analysis and Data Envelopment Analysis to evaluate balanced ambidexterity fostering innovation in manufacturing SMEs. Asia Pacific Management Review, 25(3), 142–155. https://doi.org/10.1016/j.apmrv.2020.06.003
  • Akter, S., Wamba, S. F., Gunasekaran, A., Dubey, R., & Childe, S. J. (2016). How to improve firm performance using big data analytics capability and business strategy alignment? International Journal of Production Economics, 182, 113–131. https://doi.org/10.1016/j.ijpe.2016.08.018
  • Albergaria, M., & Jabbour, C. J. C. (2020). The role of big data analytics capabilities (BDAC) in understanding the challenges of service information and operations management in the sharing economy: Evidence of peer effects in libraries. International Journal of Information Management, 51, 102023. https://doi.org/10.1016/j.ijinfomgt.2019.10.008
  • Anwar, M., Khan, S. Z., & Shah, S. Z. A. (2018). Big data capabilities and firm’s performance: a mediating role of competitive advantage. Journal of Information & Knowledge Management, 17(04), 1850045. https://doi.org/10.1142/S0219649218500454
  • Chen, Z., & Chen, J. (2022). Decision‐making model of social work specialization process using big data analysis and chaos cloud. Wireless Communications and Mobile Computing, 2022(1), 4761640. https://doi.org/10.1155/2022/4761640
  • de la Lastra, S. F.‐P., Martín‐Alcázar, F., & Sánchez‐Gardey, G. (2022). Developing the ambidextrous organization. The role of intellectual capital in building ambidexterity: An exploratory study in the haute cuisine sector. Journal of Hospitality and Tourism Management, 51, 321–329. https://doi.org/10.1016/j.jhtm.2022.04.002
  • Dietrich, D., Heller, B., & Yang, B. (2015). Data science & big data analytics: Discovering, analyzing, visualizing and presenting data. John Wiley & Sons.
  • Ferraris, A., Mazzoleni, A., Devalle, A., & Couturier, J. (2019). Big data analytics capabilities and knowledge management: impact on firm performance. Management Decision, 57(8), 1923–1936. https://doi.org/10.1108/MD-07-2018-0842
  • Gastaldi, L., Lessanibahri, S., Tedaldi, G., & Miragliotta, G. (2022). Companies’ adoption of Smart Technologies to achieve structural ambidexterity: an analysis with SEM. Technological Forecasting and Social Change, 174, 121187. https://doi.org/10.1016/j.techfore.2021.121187
  • Gobble, M. M. (2013). Big data: The next big thing in innovation. *Research-Technology Management, 56*(1), 64–67. https://doi.org/10.5437/08956308X5601005
  • Grover, V., Chiang, R. H., Liang, T. P., & Zhang, D. (2018). Creating strategic business value from big data analytics: A research framework. Journal of Management Information Systems, 35(2), 388–423. https://doi.org/10.1080/07421222.2018.1451951
  • Gu, J., Hu, L., Wu, J., & Lado, A. A. (2018). Risk propensity, self-regulation, and entrepreneurial intention: Empirical evidence from China. Current Psychology, 37(3), 648–660. https://doi.org/10.1007/s12144-016-9537-9
  • Hao, S., Zhang, H., & Song, M. (2019). Big data, big data analytics capability, and sustainable innovation performance. Sustainability, 11(24), 7145. https://doi.org/10.3390/su11247145
  • Hassouneh, I. A., Altememi, A. F., & Alkshali, S. J. (2019). Transformational leadership and its impact on exploratory and exploitative innovation: Field study of Jordanian detergent manufacturing companies. *Al-Ghary Journal of Economic and Management Sciences, 16*(2), 161–182.
  • Hussain, I., Nazir, M., Hashmi, S. B., Shaheen, I., Akram, S., Waseem, M. A., & Arshad, A. (2021). Linking green and sustainable entrepreneurial intentions and social networking sites; the mediating role of self-efficacy and risk propensity. Sustainability, 13(13), 7050. https://doi.org/10.3390/su13137050
  • Jiang, S., Yang, J., Yu, M., Lin, H., Li, C., & Doty, H. (2022). Strategic conformity, organizational learning ambidexterity, and corporate innovation performance: An inverted U‐shaped curve? Journal of Business Research, 149, 424–433. https://doi.org/10.1016/j.jbusres.2022.05.023
  • Khan, A., & Tao, M. (2022). Knowledge absorption capacity's efficacy to enhance innovation performance through big data analytics and digital platform capability. Journal of Innovation & Knowledge, 7(3), 100201. https://doi.org/10.1016/j.jik.2022.100201
  • Khan, Z., Amankwah Amoah, J., Lew, Y. K., Puthusserry, P., & Czinkota, M. (2022). Strategic ambidexterity and its performance implications for emerging economies multinationals. International Business Review, 31(6), 101762. https://doi.org/10.1016/j.ibusrev.2020.101762
  • Kościelniak, H., & Puto, A. (2015). BIG DATA in decision making processes of enterprises. Procedia Computer Science, 65, 1052–1058. https://doi.org/10.1016/j.procs.2015.09.053
  • Lin, C., Song, Z., Song, H., Zhou, Y., Wang, Y., & Wu, G. (2016). Differential privacy preserving in big data analytics for connected health. Journal of Medical Systems, 40(4), 97. https://doi.org/10.1007/s10916-016-0461-1
  • Mikalef, P., Boura, M., Lekakos, G., & Krogstie, J. (2019). Big data analytics capabilities and innovation: the mediating role of dynamic capabilities and moderating effect of the environment. British Journal of Management, 30(2), 272–298. https://doi.org/10.1111/1467-8551.12343
  • Musigire, S. (2017). Market orientation and competitive advantage: Mediating role of strategic ambidexterity. ORSEA Journal, 6(1).
  • Nozari, H., Fallah, M., Kazemipoor, H., & Najafi, S. E. (2021). Big data analysis of IoT-based supply chain management considering FMCG industries. Business Informatics, 15(1), 78–96. https://doi.org/10.17323/1998-0663.2021.1.78.96
  • Richards, N. M., & King, J. H. (2014). Big data ethics. Wake Forest Law Review, 49, 393–432.
  • Shabbir, M. Q., & Gardezi, S. B. W. (2020). Application of big data analytics and organizational performance: the mediating role of knowledge management practices. Journal of Big Data, 7(1), 47. https://doi.org/10.1186/s40537-020-00317-6
  • Sinha, S. (2015). The exploration–exploitation dilemma: a review in the context of managing growth of new ventures. Vikalpa, 40(3), 313–323. https://doi.org/10.1177/0256090915600016
  • Sun, Z. (2018). 10 Bigs: Big data and its ten big characteristics. PNG University of Technology Business & Accounting Interdisciplinary Studies, 3(1), 1–10.
  • Úbeda‐García, M., Claver‐Cortés, E., Marco‐Lajara, B., & Zaragoza‐Sáez, P. (2019). Toward a dynamic construction of organizational ambidexterity: Exploring the synergies between structural differentiation, organizational context, and interorganizational relations. Journal of Business Research, 112, 363–372. https://doi.org/10.1016/j.jbusres.2019.10.051
  • Vardarlier, P., & Silahtaroglu, G. (2016). Gossip management at universities using big data warehouse model integrated with a decision support system. International Journal of Research in Business and Social Science, 5(1), 1–12. https://doi.org/10.20525/ijrbs.v5i1.459
  • Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J. F., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70, 356–365. https://doi.org/10.1016/j.jbusres.2016.08.009
  • Winkler, J. H. (2021). From static to dynamic ambidexterity: Switches between different modes over time [Doctoral dissertation, Universität Linz].
  • Wu, J., Wood, G., Chen, X., Meyer, M., & Liu, Z. (2020). Strategic ambidexterity and innovation in Chinese multinational vs. indigenous firms: The role of managerial capability. International Business Review, 29(6), 101652. https://doi.org/10.1016/j.ibusrev.2020.101652
  • Yang, Z., & Ge, Z. (2022). On paradigm of industrial big data analytics: From evolution to revolution. IEEE Transactions on Industrial Informatics, 18(12), 8373–8388. https://doi.org/10.1109/TII.2022.3188377
  • Ye, Y., Wang, M., Yao, S., Jiang, J. N., & Liu, Q. (2019). Big data processing framework for manufacturing. Procedia CIRP, 83, 661–664. https://doi.org/10.1016/j.procir.2019.04.113
  • Zaitsava, M., Marku, E., Di Guardo, M. C., & Shahgholian, A. (2023). A fine-grained perspective on big data knowledge creation: dimensions, insights, and mechanism from a pilot study. Journal of Management and Governance, 27(2), 547–573. https://doi.org/10.1007/s10997-022-09636-7

IJTBM
Typically replies within an hour

IJTBM
Hi there 👋

How can I help you?
×
Chat with Us